A covariance-adaptive approach for regularized inversion in linear models
نویسندگان
چکیده
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولA Clt for Regularized Sample Covariance Matrices
We consider the spectral properties of a class of regularized estimators of (large) empirical covariance matrices corresponding to stationary (but not necessarily Gaussian) sequences, obtained by banding. We prove a law of large numbers (similar to that proved in the Gaussian case by Bickel and Levina), which implies that the spectrum of a banded empirical covariance matrix is an efficient esti...
متن کاملComputationally Efficient Regularized Inversion for Highly Parameterized MODFLOW Models
Though popular in the geophysical modeling community, specification of spatially distributed parameters at a scale commensurate with prevailing geological heterogeneity has not been possible in common groundwater modeling practice. The principal reasons for this are (1) the high computational burden of obtaining derivatives necessary for parameter estimation, (2) the memory required to store th...
متن کاملRegularized Linear Models in Stacked Generalization
Stacked generalization is a flexible method for multiple classifier combination; however, it tends to overfit unless the combiner function is sufficiently smooth. Previous studies attempt to avoid overfitting by using a linear function at the combiner level. This paper demonstrates experimentally that even with a linear combination function, regularization is necessary to reduce overfitting and...
متن کاملBayes Linear Covariance Matrix Adjustment for Multivariate Dynamic Linear Models
A methodology is developed for the Bayes linear adjustment of the covariance matrices underlying a multivariate constant time series dynamic linear model. The covariance matrices are embedded in a distribution-free inner-product space of matrix objects which facilitates such adjustment. This approach helps to make the analysis simple, tractable and robust. To illustrate the methods, a simple mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geophysical Journal International
سال: 2007
ISSN: 0956-540X,1365-246X
DOI: 10.1111/j.1365-246x.2007.03534.x